Problem Set #1

Instructor: Alex Houtz Due: November 28, 2025

Problem 1 (Phillips Curve).

Consider the Phillips Curve from class:

$$\pi_t = \beta \mathbb{E}[\pi_t] - \kappa (u_t - \bar{u}) + \nu_t, \quad \kappa > 0,$$

where π_t is inflation, $\mathbb{E}[\pi_t]$ expected inflation, u_t unemployment, \bar{u} the natural rate, and ν_t a shock. The subscript t indicates the time period.

- (a) Explain in words what the equation says about the relationship between inflation and unemployment. Explain the economic intuition.
- (b) What happens to the slope of the Phillips Curve as κ increases? What does that imply economically?
- (c) Graph π_t against u_t for a fixed $\mathbb{E}[\pi_t]$ and $\nu_t = 0$. Label the intercept and slope.
- (d) How does a positive supply shock ($\nu_t > 0$) shift the curve? Indicate the direction on your graph.

Problem 2 (Expectations).

Suppose expectations are formed adaptively:

$$\mathbb{E}[\pi_t] = \pi_{t-1}$$

- (a) Explain in words what this equation means about how people form expectations.
- (b) Substitute these adaptive expectations into the Phillips Curve and rewrite it such that $\pi_t \pi_{t-1}$ is on the left-hand side. For the rest of problem 2, assume that $\beta = 1$.
- (c) Interpret your result as a relationship between the change in inflation and the unemployment gap $(u_t \bar{u})$.
- (d) If unemployment is held below \bar{u} for several periods, what does the model predict for inflation over time?
- (e) Now suppose instead that expectations are anchored at a constant target $\bar{\pi}$, so $\mathbb{E}[\pi] = \bar{\pi}$. How do your answers change?
- (f) Why might the Federal Reserve focus on maintaining anchored inflation expectations?

Problem 3 (Okun's Law).

Okun's Law links the unemployment gap to the output gap:

$$u_t - \bar{u} = -\frac{1}{2} \left(\frac{Y_t - Y^p}{Y^p} \right)$$

where Y_t is actual output and Y^p is potential output.

- (a) Interpret Okun's Law in words. Why is the sign negative?
- (b) If the output gap is +2%, compute $u_t \bar{u}$.
- (c) If $\bar{u} = 4\%$, what is the implied unemployment rate u_t in part (b)?
- (d) Why might the coefficient on the output gap (1/2 above) differ over time?

Problem 4 (From Phillips Curve and Okun's Law to SRAS).

In this problem, we will build the SRAS curve from the Phillips Curve and Okun's Law.

- (a) Substitute Okun's Law into the Phillips Curve to derive an expression for inflation in terms of the output gap.
- (b) What makes SRAS steeper or flatter?
- (c) Graph the SRAS curve in (Y_t, π_t) space for a fixed $\mathbb{E}[\pi_t]$. Label Y^p on the horizontal axis.
- (d) Suppose expected inflation is fixed at $\mathbb{E}[\pi_t] = 2\%$, $\beta = 1$, and $\kappa = 0.2$. If a negative demand shock creates an output gap of -3%, what inflation rate does the SRAS predict when $\nu_t = 0$?
- (e) Now suppose a positive supply shock of 1% hits the economy. Recompute inflation.
- (f) Can the Federal Reserve accomplish its dual mandate here?

Problem 5 (Bringing it All Together Graphically).

Recall the market for money, the loanable funds market, the Phillips Curve, and the AD-AS model. Suppose a positive government spending shock hits the economy.

- (a) Draw what happens immediately in the AD-AS market. Then graphically analyze what happens in the market for money and reconcile that movement with the loanable funds market. Lastly, show what happens graphically with the Phillips Curve.
- (b) Explain in words the economic logic behind each movement in (a).
- (c) Now suppose the Federal Reserve acts to satisfy its dual mandate. What happens next in each market? Draw it.

Problem 6 (*Hard*: Bringing it All Together Mathematically).

In this problem, we will solve quantitatively for each piece of the economy.

- (a) First, suppose that TFP = 1.5, the capital stock is 100, and labor hours is 1000. Solve for Y^p given a labor share of output of 3/4 and a constant-returns-to-scale production function.
- (b) Now, suppose that MPC = 0.8, TR = 20, T = 10, I = 15, and G = 5. Solve for A in long-run equilibrium.
- (c) Suppose that $\beta = 1$ and $\kappa = 0.2$, and that we are still in long-run equilibrium. What is the long-run inflation rate if $\mathbb{E}[\pi_t] = 2\%$?
- (d) Suppose that initially P=1 and that $L(r)=0.4-20\frac{r}{V}$. If $M_s=300$, what is r?
- (e) Suppose that $\bar{u} = 4\%$. What is u_t in long-run equilibrium?
- (f) Suppose that a negative demand shock decreases autonomous consumption spending by 10%. Compute Y_t and the output gap holding all else constant.
- (g) Go to Okun's Law. What is the new unemployment rate?
- (h) Go to the Phillips Curve and calculate the new inflation rate. Verify that this inflation rate matches what you would get from the SRAS.
- (i) Now go to the money market. Assume the Fed does not move the money supply for now. Recall that $\pi_t = 100(\frac{P_t}{P_{t-1}} 1)$. What is the new interest rate?
- (j) We assumed that investment was not a function of the interest rate. If investment was a function of the interest rate, why would solving this problem become much harder?